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LETTER TO THE EDITOR 

A note on signals in electromagnetic barrier penetration 
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Department of Physics and J Stefan Institute, University of Ljubljana, Ljubljana, Yugoslavia 

Received 26 June I975 

Abstract. A previous calculation of delay time in electromagnetic barrier penetration is 
improved using a simple device for elimination of non-causal effects. 

In a recent paper (Kodre and Strnad 1975) we investigated the transmission of electro- 
magnetic signals across a barrier represented by a thin layer with index of refraction n, 
embedded in an optically denser medium with index of refraction n. At supercritical 
incidence, ie for angles of incidence 8 greater than the critical angle of total reflection 
0, = sin- ' (n, /n),  the effective group velocity inside the barrier exceeds the velocity of 
light in uacm (Strnad and Kodre 1975). To examine these phenomena further we studied 
the wavefront velocity of a monochromatic signal with a sharp front : 

t' < 0 
t' > 0 = exp( -iwr') 

I. 

A(t ' )  = i(27c-I (p-w)- '  exp(-ipt')dp J- a 
with t '  = t-(n/c)(xsinO+zcosO). 

signal, the transmitted part of the signal was obtained as 
Applying the transmission coefficient T(p, 0) to each constituent plane wave of the 

A,(t') = i(274-I @-~)-'[sinS/sin(G-iap)] exp[-ip(t'+t,)] dp (2) 

with t ,  = nZcosO/c. At supercritical incidence 6 and a are real constants, 
6 = 2 tan-'(nn,c//a2 cos 0) and a = n,cZ/c where c = (n2 sin20/n:- 1)'12 (a = n for 
transverse electric (TE) and a = n ,  for transverse magnetic (TM) polarization) and Z is 
the layer thickness. 

Integration in equation (2) can be performed by closing the integration path in the 
complex p plane. The result can be written in the form of a convolution 

I-K% 

&(t i )  = ( 2 4 - 1 ' 2 ~ ( t f )  * y ( t ' ,  e) 
r ' +  rZ  

exp(iws - &/a)[  1 + exp( - ns/a)]- ds (3) s_ Z 

= r - '  sindexp[-iw(t'+t,)] 

of the incident signal (1) with the inverse transform of the transmission coefficient 
a 

y(t, 0) = ( 2 ~ ) -  ' I 2  I- T(p, e) exp( - ipt) dp. 
Z' 

(4) 

The transform (4) represents the time dependence of the transmitted part of a short 6- 
function-like incident pulse. In other words, with the above transform the transmission 
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coefficient T(p, 0) in the plane wave expansion of the signal is converted into a time- 
dependent Green function Y(t, e). 

There is an alternative interpretation of equation (3) : an infinite monochromatic 
plane wave exp( - iot’), - CO < t‘ < CO, is incident on the barrier and the transmission 
coefficient is switched on from zero to T(p, e) at t’(z = 0) = 0, ie at the instant 
t = nxsinf?/c. (The layer is covered with a thin black sheet at the boundary plane 
z = 0 which is being gradually removed with constant velocity c/n sin 8 along the x 
axis.) Apart from the reflected signal, which we are not discussing here, both pictures 
are equivalent. 

As already pointed out, the transmitted signal (2) at supercritical incidence has a 
quasistatic ‘precursor’. This is a consequence of the simplicity of the model. The front 
of the signal penetrates the barrier at all times t > - oci, and the perturbation within the 
barrier from earlier times always precedes the advent of the front to the barrier. This 
unsatisfactory feature of the model could be remedied by introduction of a side- 
truncated wave, which leads to a great mathematical complexity. 

Another remedy of a more simple kind can be developed from the picture of the 
time-dependent Green function in the following way: let a plane wave with a sharp 
front (1) be incident on the barrier and the transmission coefficient be switched on from 
zero to T(p, e) all along the barrier at the same instant t = 0. (The absorbing sheet at 
the boundary of the layer is removed instantaneously at t = 0.) By this device the side 
truncation of the incident signal is simulated. The resulting transmitted signal is 
obtained as 

( 5 )  BT(t’) = a- sin fi exp[ - iw(t’+ t z ) ]  

The approximate character of this calculational device does not allow us to observe 
any diffraction effects that occur at the newly created edge of the wave. Yet the non- 
physical ‘precursor’ of the earlier model has been evaded. 

.BT vanishes when the upper integration limit falls below the lower limit, ie when 
t’ < 0. Consequently, the wavefront progresses across the barrier with the same velocity 
c/n as in the surrounding medium and the transmission is thus shown to be subluminal 
for any angle of incidence. However, the form of the signal is considerably changed, the 
sharp front being smoothed into a linearly rising envelope.? 

The expansion of the signal B ,  into pole residua of integral ( 5 )  shows that contribu- 
tions of all poles from the upper half-plane of p have vanished as a consequence of the 
absence of the transmitted field before t’ = 0. This fact conforms with Fox’s idea (Fox 
et a1 1970) that the absence of singularities in the complex p plane above the path of 
integration is a necessary condition for signals to be causal. Though the idea has 
originally been developed for signal transmission in dispersive media it seems to be 
valid in connection with boundary condition dispersion too. 

I ’  + IZ 

exp(iws - s6/a) [ 1 + exp( - rrs/o)] - ds. Jz 
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t It is interesting to note that for critical incidence, 0 = e,, (BT*B,)o,e, has the Same form as (AT*AT)o,s, (see 
figure 1 in Kodre and Strnad 1975) if argument t” = t‘ + t, is replaced by t ’ .  


